Understanding the Problem and Identifying the Issue
Introduction
The given problem involves plotting multiple graphs in a single diagram using Python’s matplotlib library. The code provided attempts to use a for loop to iterate over each row of a pandas DataFrame (df) and plot the corresponding values from another DataFrame (df1), but it results in an incorrect output.
The Incorrect Code
x = df1['mrwSmpVWi']
c = df['c']
a = df['a']
b = df['b']
y = (c / (1 + (a) * np.exp(-b*(x))))
for number in df.Seriennummer:
plt.plot(x,y, linewidth = 4)
plt.title("TEST")
plt.xlabel('Wind in m/s')
plt.ylabel('Leistung in kWh')
plt.xlim(0,25)
plt.ylim(0,1900)
plt.show()
The Issue
The issue with the provided code is that it attempts to plot x and y values for each row of df, but it does not account for the fact that there may be multiple rows in df1 corresponding to a single row in df. This results in an incorrect calculation of y values, leading to the dots in the diagram.
The Correct Approach
To correctly plot multiple graphs in a single diagram, we need to iterate over each row of df, calculate the corresponding values for x and y using df1 and other DataFrames (c, a, b), and then plot these values.
Using Subplots to Plot Multiple Graphs
Introduction
One way to plot multiple graphs in a single diagram is by using subplots. We can create a figure with multiple subplots, each containing one of the graphs we want to display.
Creating a Figure with Multiple Subplots
import matplotlib.pyplot as plt
fig, ax = plt.subplots(ncols=1,nrows=len(df.Seriennummer))
for i in range(len(df.Seriennummer)):
x = df1.loc['Seriennummer'==df.Seriennummer.iloc[i]]['mrwSmpVWi']
y = (c.loc['Seriennummer'==df.Seriennummer.iloc[i]] / (1 + (a.loc['Seriennummer'==df.Seriennummer.iloc[i]]) * np.exp(-b.loc['Seriennummer'==df.Seriennummer.iloc[i]]*(x))))
ax[i].plot(x,y, linewidth = 4)
plt.show()
Explanation
In this corrected code:
- We create a figure with multiple subplots using
plt.subplots(ncols=1,nrows=len(df.Seriennummer)). - We then iterate over each row of
dfand calculate the corresponding values forxandyusingdf1, other DataFrames (c,a,b), and their respective loc indexing. - For each subplot, we plot the calculated
xandyvalues usingax[i].plot(x,y, linewidth = 4). - Finally, we display all subplots using
plt.show().
Using Matplotlib’s Built-in Subplotting Function
Introduction
Another way to plot multiple graphs in a single diagram is by using matplotlib’s built-in sub plotting function, subplots.
Creating a Figure with Multiple Subplots
import matplotlib.pyplot as plt
import numpy as np
fig, ax = plt.subplots(1,len(df.Seriennummer),sharey=True)
for i in range(len(df.Seriennummer)):
x = df1.loc['Seriennummer'==df.Seriennummer.iloc[i]]['mrwSmpVWi']
y = (c.loc['Seriennummer'==df.Seriennummer.iloc[i]] / (1 + (a.loc['Seriennummer'==df.Seriennummer.iloc[i]]) * np.exp(-b.loc['Seriennummer'==df.Seriennummer.iloc[i]]*(x))))
ax[i].plot(x,y, linewidth = 4)
plt.show()
Explanation
In this code:
- We create a figure with multiple subplots using
plt.subplots(1,len(df.Seriennummer),sharey=True). - We then iterate over each row of
dfand calculate the corresponding values forxandyusingdf1, other DataFrames (c,a,b), and their respective loc indexing. - For each subplot, we plot the calculated
xandyvalues usingax[i].plot(x,y, linewidth = 4). - Finally, we display all subplots using
plt.show().
Using Seaborn’s JointPlot Function
Introduction
Seaborn is a Python visualization library based on matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics.
Creating a Figure with Multiple Graphs
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
sns.set()
fig, ax = sns.jointplot(x=df1['mrwSmpVWi'], y=(c / (1 + (a * np.exp(-b*x)))), kind='scatter')
plt.show()
Explanation
In this code:
- We import the necessary libraries.
- We set the seaborn style using
sns.set(). - We create a joint plot of
xandyvalues usingsns.jointplot(x=df1['mrwSmpVWi'], y=(c / (1 + (a * np.exp(-b*x)))), kind='scatter'). - Finally, we display the plot using
plt.show().
Conclusion
Plotting multiple graphs in a single diagram can be achieved through various methods, including using subplots, seaborn’s joint plot function, and other visualization libraries. By choosing the appropriate method based on your data and desired output, you can effectively communicate complex information to your audience.
Last modified on 2024-06-12